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THE VARIATIONAL METHOD FOR AERODYNAMIC OPTIMIZATION

USING THE NAVIER-STOKES EQUATIONS*

BAMBANG I. SOEMARWOTO I

Abstract. This report describes the formulation of an aerodynamic shape design methodology using a

compressible viscous flow model based on thc Reynolds-Averaged Navier-Stokes equations. The aerodynamic

shape is described by a set of geometrical design variables. The design problem is formulated as an optimiza-

tion problem stated in terms of an aerodynamic objective functional which has to be minimized. The design

scheme employs a gradient-based optimization algorithm in ordcr to obtain the optimum values of the design

variables. The gradient of the acrodynamic functional with respect to the design variablcs is computed by

means of the variational method, which requires the solution of an adjoint problem. The formulation of the

adjoint problem is describcd which lcads to a set of adjoint equations and boundary conditions. Using the

flow variables and the adjoint variablcs, an expression for the gradient has been constructed. Computational

results are presented for an inverse problem of an airfoil. It will bc shown that, starting from an initial

geometry of the NACA 0012 airfoil, the target pressure distribution and geometry of a best-fit of the RAE

2822 airfoil in a transonic flow condition has been reconstructed successfully.

Key words, aerodynamic optimization, airfoil design, variational method, optimal control, inverse

design, Navicr-Stokcs equations

Subject classification. Applied and Numerical Mathematics

1. Introduction. Methodologies for solving aerodynamic shape design problems can bc distinguished

into two classes: (i) inverse methodology and (ii) optimization methodology. The distinction is based on

how the design problem is formulated.

In the inverse methodology, the design problem is posed in terms of a prescribed target pressure distri-

bution which has to be realized on the surface of the shape. Thc designer is assumed to bc able to prescribe

the target pressure distribution in such a way that it reflects required aerodynamic characteristics like lift,

drag, pitching moment, and boundary layer properties which determine the aerodynamic performance. In-

verse methods assist the designer by constructing an aerodynamic shape which generates the target pressure

distribution (Refs. [22], [11], [10], [5]).

In the optimization methodology, the design problem is posed as a minimization problem of an aerody-

namic objective functional subject to constraints on the geometric and aerodynamic properties. Optimization

methods assist the designer in locating the minimum of the objective while satisfying the constraints. From

thc practical point of view, aerodynamic optimization methods, pioneered by Hicks et al. [14], are more

attractive since these methods can handlc a large class of design problems, including those classified as in-

verse problcms. This report describes a contribution to the development in the aerodynamic optimization

methodology.

Aerodynamic optimization methods can be distinguished into two categories: (i) global methods and (ii)

local methods. Global methods, such as those based on the genetic algorithm [9], arc aimed at obtaining the
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global optimum. These methods are most useful for cases in which multiple minima arc present in the design

space. It is widely known, however, that global methods incur large computational effort, where hundreds

or even thousands of flow analyses may be needed before the global optimum can be found.

Local methods use the information on the gradient of the objective for locating the optimum. Therefore,

for cases with multiple minima, local methods are limited to produce only one of the minima (i.e., the local

optimum), the actual value of which depends on the starting point of the optimization process. Because

of the modest computational requirement, and sincc any local optimum represents an improvement over an

existing design, local methods are very useful design tools. The method described in this report belongs to

this category.

Recent developments in the gradient-based aerodynamic optimization methodology suggest that two

main streams may be distinguished: (i) the method of sensitivity analysis and (ii) the variational method.

This distinction is based on how the gradient is computed.

The formulation of the gradient using the sensitivity analysis method (Refs. [27], [24], [15]), is done on

a discrete level, which means that one must deal with the discrete form of the flow equations. This method

has the advantage that the sensitivities of the flow properties on the grid points can be determined. Once

these become available, the gradient of an aerodynamic functional can be computed easily using the chain

rule. However, the computational effort strongly depends on the number of design variables. For each design

variable, a sensitivity equation in the form of a (large) linear system of equations must bc solved. Thc

computational requirement can therefore be prohibitive if a large design space is to be covered.

The formulation of the gradient using the variational method can be done either on a discrete level

(Rcfs. [2], [23], [6], [21]) or a continous level (Rcfs. [25], [18], [20], [19], [26], [1], [17], [16], [28]). This method

needs the values of the so-called adjoint variables as the solution of a set of adjoint equations. The numerical

solution procedure for solving the flow equations can be adopted for solving the adjoint equations. The

gradient is expressed in terms of the flow variables and the adjoint variables. The computational effort for

obtaining the gradient is not determined by the number of design variables. Instead, it is determined by the

number of adjoint equations that must be solved, which is equal to the number of aerodynamic functionals of

the aerodynamic objective and constraints. Anticipating that the number of design variables is significantly

larger than the number of aerodynamic functionals, which is true in many practical cases, the variational

method has a significant advantage over the method of sensitivity analysis.

This report describes the design approach utilizing the variational method for airfoil design using the

compressible Reynolds-Averaged Navier-Stokes (RANS) equations. Recently, the author [28] has demon-

strated the feasibility of the approach in dealing with inverse problems and constrained drag-reduction

problems, where the compressible viscous flow model based on the RANS equations was used for the flow

calculations. An analytical expression of the adjoint equations was formulated based on the continous form

of the aerodynamic functional and the RANS equations. In the previous work, however, considerations from

the physics of the boundary layer must still be taken for obtaining an approximation of the gradient, despite

the success in obtaining true viscous adjoint solutions. Although the approximation can lead to useful results,

as shown in Ref. [28], it is desirable to have a gradient expression which is derived consistcntly using the

RANS equations. The objective of the prcsent study is therefore to obtain the true RANS-based gradient

expression.

2. Statement of the Design Problem. The design problem being addressed is formulated as a

minimization problem of an aerodynamic functional 5_:

(2.1) Minimize _'(Q, O)



where Q is the vector of flow variables, and 0 is a vector representing the geometric parameters that define

the aerodynamic shape. The vector 0 is treated as the design variables, the optimal value of which is to be

determined. There is an implicit dependency of Q upon 0 through the RANS equations for a given onset

flow condition.

Problem (2.1) is to bc solved by means of an itcrative gradient-based optimization algorithm. This

requires information on the gradient of _" with respect to 0 for each iterate. An efficient way of treating

the implicit dependency of Q upon 0 in evaluating the gradient is through the variational method. In the

variational method, an adjoint problem must bc formulated in which a set of adjoint equations are to be

solved subject to proper adjoint boundary conditions. The gradient is expressed in terms of the flow variables

(i.e., the solution of the flow problem) and the adjoint variables (i.e., the solution of the adjoint problem).

3. The Reynolds-Averaged Navier-Stokes Equations. Assuming adiabatic flow and no external

forces, the time-dependent RANS equations in the conservative form are written as

(3.1) c3O
0--_- + XT- F = 0 in _,

where _t is the flow domain, and Q is the vector of conservative time-averaged flow variables,

pu

(3.2) Q -- pv '

pE

which are non-dimcnsionalized with respect to the free stream. At the steady-state, equation (3.1) becomes

(3.3) V. :F = 0.

The flux F consists of the convective, Fc, and viscous, l_v, flux vectors,

(3.4)

The convective flux vector is defined as

(3.5)

where fc and g_ are the Cartesian components given by

= puu + p

(3.6) fc [ '
\ (pE + p)u

gc

I pv

puv

pvv + p '

(pE + p)v

where p, u, v, p and E are the air density,

respectively. The viscous flux vector is defined as

g_

where/e and g_, are the Cartesian components given by

° /(3.8) fv = T=x
T=y

T=xU + T=vV -- q=

X- and y-velocity components, pressure, and total energy,

gV (°)"Txy

_Y

Txytt Jc TyyV -- qy



Assuming that air behaves like a Newtonian fuid, the elements rx_, T_u, and rvv of the viscous stress tensor

are expressed as

(3.9) r_ l(V. ?) au= +2u ,

Ov

(3.10) = ?) +

(3.11) rxy =# + ,

where 1 is given by the Stokes hypothesis,

2

l= 3#.

The viscosity # consists of the dynamic viscosity Pd and the eddy viscosity #t,

# = #d + #t,

where #d is given in terms of the onset flow condition by the Sutherland's law,

#__d = (__._) 3/2T_+110#_ T + 110 '

with T the absolute temperature, while Pt is defined by a turbulence model which, in the present study, is

based on the Baldwin and Lomax model.

Tile Cartesian components of the heat flux vector q are defined by

OT

(3.12) q* = -aOxx'

0T

(3.13) qu = -n--_y ,

where the thermal conductivity coefficient n consists of the laminar part, ha, and turbulent part, _t. These

arc related with the viscosities through the Prandtl numbers,

Prd _d
= Cp t¢Z ,

Prt #_
= Cp I_t ,

with Cp the specific heat at constant pressure and h the mass specific enthalpy. The Prandtl numbers arc

assumed to have constant values throughout the flow, Prd = 0.72 and Prt = 0.9, respectively. The total

energy E per unit mass is defined as

= e + _(u 2 + v2),E

where e is the internal energy per unit mass. The RANS equations are closed by the equation of state of a

calorically perfect gas, given as

(3.14)

(3.15)

1 2

P = (7- 1)(pE - -_p(u + v2)),

T= l (E- _(u2 + v2)),



where "t = Cp/C_, with cv the specific heat at constant volume.

the internal energy as

# 0e
(3.16) qx = -_/Pr Ox'

/, 0e
(3.17) qY -- -_Pr Oy'

where

The heat fluxes can be written in terms of

_Vr =_ +

4. Formulation of the Adjoint and Gradient Equations. It is assumed that the aerodynamic

functional ._ takes the form of a surface integral over the airfoil surface Sa:

J- -- f _p(p, 7_,, H) dS,(4.1)
a

where _p is an explicit function of the pressure p, the wall shear stress _-_ and the design variables H, with

0(_.
vw = # On

The functional (4.1) represents a large class of design problems, including those expressed in terms of lift,

drag, and pitching moment.

As Q is obtained from the steady-state RANS equations with the boundary conditions (3.22), the

functional _- is independent of the transient state. Therefore, it is sufficient to consider the steady-state

RANS equations (3.3) and the boundary conditions (3.22) in the definition of a Lagrangian L: as follows,

(4.2) £= _ OdS+ _ J_.(V._')df_+ _ T.BdS,
a a

(3.22) B= 17._' --

_e.

The adiabatic wall boundary condition reads

(3.20) _T. _-- 0.

This is formulated in terms of the internal energy as

(3.21) Ve. _ = 0.

The boundary conditions arc collected into a vector B as follows,

On the airfoil surface, Sa, the no-slip and adiabatic boundary conditions arc applied. The no-slip boundary

condition can bc expressed as

(3.18) l_. _ = 0,

(3.19) V. _'= 0,

where V denotes the velocity vector, while _ and g are the unit normal and tangential vectors, respectively.



whereA andT arcthevectorsofLagrangemultipliers.TheLagrangemultipliersA,alsoreferredto asthe
adjointvariables,aredefinedin _ andconsistsof fourcomponents.TheLagrangemultipliersT isa vector
withthreecomponentsdefinedonSa.

In order to derive the adjoint and gradient equations, one must evaluate the variation of/2, denoted as

_£, implied by the independent variations of A, T, Q, and {9,

The notation 5£_ refers to the variation of d£ due to the variation of A while the other variables arc kept

fixed, and similarly for _£v, etc. The variations _£_, J£r, and _£Q arc evaluated with 8 kept fixed. Keeping

8 fixed implies a fixed domain _. For the variation of A, T, and Q with a fixed domain a prime notation is

introduced as )_, T', and Q', respectively.

4.1. The Adjoint Equation. The variation A _ contributes to _/2 with

(4.3) 5£_ = _ A'. (V-F) df_,

which is cancelled by the RANS equations (3.3). The variation T' contributes with

(4.4) 5£T = f T'. B dS,
a

which vanishes because of the boundary conditions (3.22).

As the RANS equations (3.3) and the boundary conditions (3.22) are satisfied, giving 5/2_ = 0 and

J£r = 0, the variation of £ becomes

5£ = 5£Q + 5£o.

The adjoint equations and boundary conditions follow from the condition that the contribution from the

variation Q' vanishes, i.e.

(4.5) ,_£Q = O.

The domain integral in equation (4.2) can be integrated by parts to give

(4.6) £ = /z C dS - _ A . (_' . _) dS - _s ,k . (_' . _) dS
a a c_

- F. V,_ d_ + T • B dS.
a

The variation _£Q can be expressed as

d£Q = o _ dS - ,X . (F' . _) dS- A . (F' . _) dS
a oo

a

where the notations 1_' and B' refer to the variations due to Q'. The flux vector _, can be split into the

inviscid and the viscous part:

= _



It is convenient to introduce the inviscid and viscous variations, 62" and _fff, implied by F'c and -'F v, respec-

tively, and the variation 5/(: implied by B', such that

(4.7) 5£Q = 5_=Q + _Z - _ff + 5r.

The variation 6£Q will be obtained with the assumption that

• The variation of the viscosity, p', can be neglected.

• The variation of the viscous terms F', on the far-field boundary Soc can bc dropped.

The aerodynamic functional contributes with

0¢ T'_

where

The inviscid term 5Z can be obtained as

o(g'.
= # On

°2 _x4) p(?' n) dS(4.9) 5I= - _,o(A. _)('7-1)(pE)' dS- _o (AI + /-_ •

-Is (CTA).Q' dS- _(A-'r . VA).Q' d_,

where A is the Jacobian of the flux vector Fc with respect to Q,

0Q'

C is the Jacobian of the normal flux defined on the boundaries

C -- o(P_. ,_) _ £. ,_,
aQ

is an adjoint velocity vector with the Cartesian components A2 and ha:

The procedure for obtaining 5ff is described in the appendix, with the result given as equation (A.30). The

variation _K_ can be obtained as

a2 V(p g Vp'
(4.10) _ = T1(¢'- _) + r2(_' •_ + r_- (_-:- i_ dS.

a

where a is the speed of sound,



Substitutingequation(4.8),(4.9),(4.10)and(A.30)into (4.7)leadsto

(4.11) 5£Q = ('y - 1)(pE)' + --T w -- (A. _)(7 - 1)(pE)' - ,)l x +. Orw "rT-i ;_4 P(Y"'_)

+(_ ._),-'=+ (_. _,-"

{ O(._.s-') • g)lH)(17' s-)#H) (17'_-_" _; (_ ._)-(t°(_;_)+(_. .

# V(p )'.g Vp'-g

+A4rw(17'. _ + Aaa' _rr (_ 7-1T p

( n 0(A._)'_] ((9(A :s-") + 0(A. _) H(/. _)(17'. s-)t(v _) + _--37-. e (17'_) - _ \ oR os

p (-y - 1)p/

a_ V(0 )'._ _V0'._
+T1(17'. _) + T2(17' . s-')+ Ta-- dS

-r ('r- i_

- £ (c a)q' £(Z ea +Y K)q'
where Y and K arc given by equations (A.28) and (A.29), respectively, H is the surface curvature, and

0(17'. _)
7-"= (l + 2#) On

Setting the domain integral in equation (4.11) to zero leads to the adjoint equations:

(4.12) A-_-x_X+Y_K=0 in_.

The surface integral over So_ is eliminated in the same way as that described in Ref. [28], which leads to a

set of far-field characteristic-based boundary conditions for the adjoint equations.

The surface integral over S_ has to be eliminated too. The contributions from (I7'. _) and (17'- _ are

cancelled by the conditions

a2 D(A. s-) (,_. _)lH +l(V. A). zl,t -On '(4.13) T1 = A1 + 3,7-i-A4 p+# Os

(4.14) T2 = l 0(_" if) (O(A. s-) O(A-_) H(A. s-))0----7- + (_" s-)#U - A4rw + # _ On + Os

The terms with (V(pE)'. _) and (Vp'. _) arc eliminated by the relation

(")(4.15) Ta=-A4 _Prr '

The contributions from (pE) _, r_ and p' arc set equal to zero by satisfying the conditions

(4.16)

(4.17)

(4.18)

o¢_.n-
op'

or,_._-
_T w

_A4 -n= O.



Thesemaybeconsideredascorrespondingto theno-slipandadiabaticwallboundaryconditions(3.22).The
termwith 7_' can be eliminated by the condition

(4.19) A-_ = O.

This, however, conflicts with equation (4.16). This problem is circumvented by introducing a term with rn,

° ,a(t _. _)

into _b of equation (4.1), i.e.

= _(p, rw, r., 0),

so that equation (4.8) is modified to

(4.20) 65tO = (_ - 1)(pE)' + --7_ + 0_T _'n] dS.a (:_Tw

The associated terms in equation (4.11) arc replaced by the above expression appropriately, and equa-

tion (4.19) is replaced by

0¢
(4.21) A.r_--

t97-n'

This can be made compatible with equation (4.16) by imposing the condition

(4.22) CgT,_-- ap

This means that for a well-posed adjoint problem, there is a restriction for the aerodynamic functional _-.

The definition of 9v must include a term with Tn which satisfies equation (4.22). Restriction of the same

nature was recognized in Ref. [3]. In the present study, however, equation (4.22) is proposed as a general

approach to ensure the well-posedness of the adjoint problem. One should also be aware that the combination

of the continuity equation and the no-slip boundary conditions dictates

0(_. a)
-- 0,

On

implying T_ = 0, so that introducing a term with Tn into _, as suggested above, does not modify the

minimization problem of _.

The adjoint problem can now bc summarized as follows. Equation (4.12) in f_ is to bc solved subject

to a proper far-field characteristic-based boundary condition on S_ and the near-field boundary condi-

tions (4.16) (4.18) on So. The resulting vector of adjoint variables A is used for obtaining T_, 7"2, and T3

from equations (4.13)-(4.15).

4.2. The Gradient Equation. After solving the flow and adjoint equations, providing the values of

Q, _, and T, the variation of £: becomes

(4.23) 6E : 6E.o

Since 0 is a parameter that describes the shape of Sa, which is part of the flow domain boundary, the

variation 60 implies also a variation of the flow domain fL As a result of this, and recognizing that

q = q(x), xEfl,

A=A(x), x_,

T=T(x), x_So,



the variation of _t also implies a variation of Q, k,, and T in the form of, respectively,

0o(0 )(4.24) 5Qa= _ _.60 , xen,

(4.25) 6Aa =

(4.26) 6"I'_ =

This leads to the introduction of the notion

(4.27)

where

2 = (Xx

The Cartesian components of a_ are defined as

_'Jx

U2y

o (ox)b-o.6O , xen,

)-_ .50 , xeSa.

of the deformation velocity _ (Refs. [8], [13], [28]):

_(x) = 2.60,

Ox Oy) Tx_)T= _ go

The normal and tangential components of a7 are written as

wn = Xn " 50,

"J8 = X8 "50,

Xs ny -- nx Xy

where

Expressions (4.24) (4.26) can now be written in the form

o (ox)Ox _-0.60 =_Q.,_, x_,

o (ox)Ox -_.50 = VA.3, x_,

0x 0--0" = -_s "_' x_,9_,.

These represent the so-called convective variations of Q, A and T, respectively. The convective variation

refers to the interpretation that, the domain moves in space with the speed _ which gives rise to the

deformation of the domain boundaries.

As a complement to the convective variation, the notion local variation can be introduced for the vari-

ations Q', A', and T'. The local and convective variations constitute the total variation represented by a

material derivative:

Q = q' + VQ.,7,

_, = )_' + _,_. ,7,

• =v'+ -b_- _,

10



where the first and second terms in the right-hand sides are the local and convective variations, respectively.

The concept of material derivative can also be applied to the variation of geometric properties, the

formulae of which are given in Rcf. [28] as

• The material derivative of a unit normal vector _:

(4.2s)

where H is the surface curvature.

_(0 o ){t= k, Os + Hws _.

• The material derivative of a unit tangential vector _':

(0 o )(4.29) 8= \ Os + Hws _.

• The material derivative of a surface element ds:

)(4.30) dS = k Os + II_n dS.

• The material derivative of a volume element df_:

(4.31) d_ = (V. _)da.

For functionals of the form

use can bc made of the material derivative formula:

(4.32) _l=_f'df_-fsf_,_dS,

whereas for functionals of the form

the material derivative can bc written as

(4.33) ( O_s Hun)_p2= fs [f' + Vf._+ f \ c3s + ] dS.

These material derivative formulae arc applied for obtaining the variation of 5£. Equations (4.33) and (4.32)

arc applied for each surfacc and domain integral, respectively, which appears in the expression of £:. It is

noted that the terms with f' in formulae (4.33) and (4.32) must bc disregarded, bccausc these refer to the

local variations which have been eliminated by the solutions of the flow and adjoint problems.

The far-field boundary Soo and the trailing edge can be assumed fixed with J = 0, and the corresponding

terms can be dropped. For the sake of brevity, a tilde notation is introduced for the convective variations.

The variation of £: due to the variation of 0 can be derived from equation (4.6). With the no-slip and

11



adiabaticwallboundaryconditions(3.22)takenintoaccount,this leadsto

(4.34) : - --T_ + --r. + -68

+(S. ,_)_.- (_. _)(-y- I)#E - (]. ,_+ S. _)p

a2 )+(S-_+(_-_+S-bTw- _1+ _-_x4 p(ff-_)

_ ku/0(X.0ssO (X._)IH)(_. _)- {IO(X-[_)_as + (X-sOuH)(_.s0

+:_4T_(}. _ + _-y_(V_. _+ _. ,_)+ (_. V_,),o,

+TI(_. _) + T2(_. _ + Ta(V_'-_+ Ve-_)] dS.

where _ and g' are given by equation (4.28) and (4.29), respectively, while

p_'E= V(pE). _,

_= _e._,

{w: (yr. ,_). _'+ (99. ,_). _'+ (vv. ,_). <

_,, = (vv. a). _ + (9_. _). a + (vv. _). _.

Substituting the expressions for Tx, T2, and Ta given by equations (4.13)--(4.15), into equation (4.3,1) yields

az : (_ - 1)_ + --_ + --_ + •_0

+ (_-(_.z)v+(_.s_w)_ o, +_")

+(,_. K)Fn - (,_. _)(7 - 1)P_'_ - (]" _ + "_" _)P

+(S. _ew+ (_. _+ _,.i-)_ + (_. _),_.

o o(X._)]+ l(_. X)+,,---b-U-_ ) (_' _) {O(A.s-') O(A.#) H(A.s_) (_.s0]+ # k On + Os
dS.

The adjoint boundary conditions (4.16) (4.18) and the condition (4.22) cancels the contributions from pE,

12



_, and_,,,sothat theaboveequationreducesto

(OWS+Hwn)

0(S. _)
08

Expanding f_, 9 and lm. 9_ gives

(0_ H_n)

- ((_. _) _. + (_3. _) n_ k o_

+ (VA2._)ny -(VA3._)nx + \ Os +H_s (_'_) Tw

_ O(A.ff)) ((Vu._)nx +(Vv-_)nu)+ l(_. ,_)+ _t,_

+# _ On + Os
dS.

The gradient of the aerodynamic functional 9r with respect to the design variables 0 can bc obtained from

d5r 61:
-- lim --

dO _0_o 60'

which can be elaborated by using the definition of _, equation (4.27), and equations (A.11) (A.13) to give

(4.35) + -
- (Ox'_ + Hxs) (A. s-)) p- ((VA_. _) n_ + (_A3. :_) nu \ Os

(Ox'_+Hx_)(A.#))Tw+ ((_A2'x) ny -- (_A3"x) nx + \ Os

- 2n, n_ \Ox Oy]+(nu-nx)\Ox +-_y-y] r_,X,,

-(¢. _)x. + _(v-_) + _u_-
\ /

(o(_._ o(S. _)+_ -On + Os H(A. s-)) ((Vu. _)nu

13



5. Numerical Procedure and Computational Results. The RANS equations (3.3) are solved by

means of HI-TASK [12], [7] with the Baldwin-Lomax turbulence model [4] implemented. The numerical

proccdurc in HI-TASK deals with the time-dependent RANS equations which are integrated explicitly using

a five-stage Runge-Kutta scheme towards the steady-state. The spatial discretization employs a cell-vertex

finite-votumc scheme. Jameson's type of artificial dissipation is introduced consisting of 2-nd ordcr and 4-th

order terms. The convergence towards the steady-state is accelerated by means of a multigrid procedure.

Characteristic-based boundary conditions are applied on So_.

The adjoint solver employs a similar numerical scheme as that used in the flow solver. The procedure

deals with the time-dependent form of the adjoint equations which are integrated explicitly towards the

steady-state using the same five-stage Runge-Kutta scheme. Artificial dissipation is introduced for the

adjoint equations in the same way as that for the flow equations. The convergence towards the steady-state

is accelerated by the same multigrid procedure. Characteristic-based boundary conditions are also applied

on S_ (Ref. [28]).

The optimization routine FSQP [29] and the flow solver HI-TASK are integrated with the adjoint solver

and the gradient evaluator, which forms the design code. A design test case is defined representing a

reconstruction-type inverse problem. The target pressure coefficient Cp is obtained from a flow analysis of a

best-fit of the RAE 2822 airfoil with the flow condition:

M = 0.73, (_ -- 2 °, Re = 6.5 × 106,

where M, (_ and Rc are the Mach numbcr, angle of attack, and Reynolds number, respectively. The target

Cp distribution is defined on the airfoil chord with propcr distinction between the lower and upper surface

of the airfoil. The NACA 0012 airfoil is used as the starting airfoil geometry.

The objective functional to bc minimized has the form

1/0 .7 = _ (C, - Cp,t)_ dx + -2 (Cp - Cp,t) 2 dx

where x is coincident with the airfoil chord, and Cp,t is the target value. The subscripts l and u refer to the

lower and upper surface, respectively. 9r can also be expressed in the form

.T = _ (Cp - Cp,t)21n, l dS.
a

The function _ in this case is defined as

It is noted that

1
¢ = _(Cp - Cp,t)21n_].

cp = 2(p -

with p,p_ non-dimensionalized by p_V 2. For this case,

0p

Equation (4.22) requires that _" must be modified to

a a
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Theadjointequation(4.12)issolvedsubjectto theadjointboundaryconditions(4.16)(4.18),whichin this
casearc

A._ = 2(Cp - Cp,_)tnu],

_.g=O,

V.X4 • _ = O.

In the present study, the deformation velocity has been formulated as follows,

(5.1) wz = 0 on Sa,

while wy is defined by the curvature-continous shape paramcterization scheme described in Ref. [28]. This

parameterization scheme has proved to be effective in covering a large variation of airfoil shape and, after a

proper scaling, has shown to imply an efficient optimization process.

One purpose of selecting this test case is to investigate the accuracy level of the computed gradient,

because the optimal solution (i.e., the target airfoil) is known beforehand. The computed gradient is con-

sidered to be of sufficient accuracy if the optimal solution can be obtained. The optimal solution is assumed

to bc obtained if 5r < 10 -4. This means that the difference between the actual and target Cp distributions

is roughly within 0.01 (engineering accuracy).

Figure 5.1 shows the design iteration history. The engineering accuracy has been achieved with 16 flow

analyses. The optimization was stopped after the maximum allowable number of flow analyses (25 analyses)

was exceeded. The Cp distributions and airfoils are shown in Figure 5.2. The dashed line (the optimization

result) and the solid line (the target) arc almost coincident, which demonstrates that the best-fit of the RAE

2822 has been closely reconstructed.

6. Conclusion. The objective of the present study is to construct an aerodynamic design methodol-

ogy using the variational method in two-dimensional compressible viscous flow governed by the Reynolds-

Averaged Navier-Stokes equations. The focus of the study is to obtain a correct gradient expression.

The present method has been successfully applied for solving a reconstruction-type inverse problem in

a transonic flow condition. This means that the correct adjoint formulation and gradient expression have

been obtained.

The numerical result presented also strongly indicates that the present method is capable of dealing with

other types of design problems, as long as the adjoint problem can be formulated properly as described in

the preceding sections. It is therefore suggested that the present method is applied to more practical design

cases, such as those involving the criteria on lift, drag, and pitching moment.
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Appendix A. The variations considered here are thc variations of the viscous terms due only to the variation

Q' with the assumption that

• The variation of p with respect to the variation of Q is neglected.

• Thc viscous terms on the far-field boundary are dropped.

The viscous term is defined as

j =

The variation of J duc to Q' can bc expressed as

: (9. dn

Integration by parts yields

(A.1) _J=-_ A.(F_v._)dS-_F'v.VAd_.
a
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It isnotedthattheunit normalvectorpointstowardtheflowdomain.Recallingcquation(3.8)andintro-
ducing5,7"1, 5J2, 5,73, and 5Ja as follows,

(A.2) 6Jl=fs [As(n_r'x+ n_T'_)+Aa(nx '_'_y+ n_T_)] dS,
a

(A.3)
J_ a k

, , ]+ ny (%yu + r_v + r_u' + ry_v' - q'y) dS,

£ L_0x[' j0A3, l(A.4) 6J3: + <u-_-y + dl2,

(h.5) 6& = (r%_ + ,'=u' + r'_v + r_v' - q_)_

, , 0A41
+(_'_ + _;_u' + _-_ + _'_v' - q_)--_-] _n.

equation (A.1) can bc written as

(A.6) aJ :-6_ -6_-a_-6_.

The variation 6J1 will be dealt with first. Introducing a local coordinate system (n, s), where n and s arc

coincident with the local normal and tangential direction on the surface, respectively, the component of the

viscous stress tensor can be written as

(co(i?.ff) O(V.s-) H(i?.ff)) + 2#nyH(n_(i?.ff)- n_(V.s-))(h.7) vx_ = l \---O-n-_n + Os

o(i?. a) _ o(i? sO + 2, _ _

(A.8)
{CO(I?. if) c0(l?, s_ H(i?. _))r_ = l \ On + cOs

+ 2#n_ H(n, (i?. _) + ny (i?. _)

+2, n_ On + n_ con ]-2pn_ nv _k -On + -Os

) (co(Y_ co(i?_))
/co(__:_) co(i?._ +,( _ _ _) +

(h.9) r_y: 2#n_ nu _ con c3s n_ -_n -Os

2 )H(i?. SO.-2#n_ nu H(i?. _) - #(n_ - n_

where H is the surface curvature. The variation &7] can be worked out by using the expression for rzx, Try,

and %y given above. After some algebraic manipulation, one obtains

+(,t. ff)/H(i?', if) - (A. SO#H(I?'. sO] dS,
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whcre_ isanadjointvelocityvectorwithA2andAabeingtheCartesiancomponents.
tangentialderivativecanbeworkedoutwithintegrationbypartsto yield

where

Thetermswith the

0(0'.
= # On '

0(0,. _)
_-"= (t + 2_,) On

while u and 1 refers to the upper and lower trailing edge, respectively. If the surface Sa is assumed smooth

(i.e., a sharp trailing edge is assumed to havc a large, but finite, curvature), and _ as well as 0 are continous

accross the trailing edge, the first two terms on the right-hand-side vanish, such that

(A.IO) )
,, dS.

To obtain the expression for 5J2, use is made of the no-slip boundary conditions (3.18) (3.19) which imply

0(V-_)
On - O,

0(0.
Os - O,

0(0. if) _ O.
8s

It is noted that the first equation above is identical with the continuity equation taken on the airfoil surface

with u, v = 0. Equations (A.7) (A.9) can now be written as

(A.11) T_ = 2 n_ ny T_,

(A.12) ryy = -2 n_ ny T_,

(A.13) r_y = ( n_ - n 2 )v_.

Substituting these and equations (3.12) (3.13) into (A.3) gives

/s (?Prr#Ve"ff) dS.5& = :_ _-,,(0'. _ +
a

Noting that

(A.14) h'e' -- -
")'-1
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or in termsofthetotalenergy,

(A.15) _e'= a2 ( (pE)' P' )p (_/-- 1)p '

the variation 5J2 can be written as

° Vrr p _---ffo es.

Next, the variation of 5J3 is obtained as follows. Equations (3.9) (3.10) are substituted into equation (A.4)

which yields

[5J3= \ Ox Oy ]

( Ou' OA2
+2# \ Ox Ox

Rearranging the coefficients of p gives

ov'o_ I [o_ o_ h (o_' °_'l l
---- + ---_y ] + _ + +oy \-_y _x / \ Ox oy ] ]

dgt.

cOA: OAa__o,,'I (x,3ov' __ov'i
----+ oy ay) +_\o_-_ _-x + oy ay)

This can bc written in a compact form as

/o[ ( )1_j3 = (_. ,x)l(v • ,2') +, _ . _' + _)_. _v' + _ . _u' + N _v'

Using the following vector identities,

d_.

(v. _)l(v. 9') = 9. (t(9. S)9') - 9(l(9. S)). 9',

_?_=. _u' = _?. ,_'_ - u'(_. ,¢_),

_V_. _?v'= V. ,,,'V_ - _'(V. u_?A_),

one obtains

(A.17)

oS.V_, ¢ ,aS , V._u_ = -,_ _-

o_ ,of, , _ . _,_._'=_.uv _-

f,[ ,ox ,oxlaJ_ = V (l(V- _,)_') + _ u_'_ + _ _'_3 + _-_ _ + _u_ _] d_

[(O(,_._) 0_)_,

+ \(°(t#°_x) + v'w_ + V._ v' _.
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The terms having the divergence form, which are collected under the first integral, are worked out using the

Gauss theorem (with the integral over Soo neglected):

a

f _ ,o2 ,o2. .u -_x dfl = - Jso[ " _ dS,.u Oz

_..vN_a=- o.VN._es.

Now, the following notations are introduced

(A.18) r., : 1V. 2+2._Ax 2,

0A3
(A.19) Fyy : 1V. 2 + 2. Oy '

(A.20) Fxu =. \ O_-x + Oy ]"

which may be considered as the elements of an adjoint stress tensor because of the close resemblance with

7_x, 7_u, and 7uy. After some manipulations, equation (A.17) can bc written as

(A.2_) _j_=-£o z(e.2)+ _.--aT-)(_'._)

+" \ On + Os

]
\ Ox + ou ]u'+ \--gg-z+--ff_-y]v'j

dr2.

The variation _ff4 (A.5) is worked out using equations (3.9) (3.17). This gives

+2"t,_NTx +_N_-y +"t0x + oy) \ 0_ + 0y/

+,x_-D-;y)u'+ t., o_ +,_,W )v'
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After some manipulations, one obtains

&,f4=_[(I_-VA4)/(V'I _)

ou, )(o,,'o:,, x,,_ (Ov'X,, ov'o_4
+ _u t _-U_ + oy oy ,s +""tax ox + o_ o_

OA4 Oe' ]
# (OC' OA4_

+ 7-_r\Ox Ox + Oy Oy J d_.

A compact form can bc written as follows,

_,]4=_ [(V'_A4)/(_ "_t)

OA4
0_4 i_. Cu' + _-D_ v •_v'+_u_4- _' + _v_4. _v' + _97U y

The following vcctor identities arc considered

(Ti_" _A4)/(_' Y/) : _-(l(Y. V/_4)V') - Tv_'. Vl(V. V)_4),

,u_A4. _u' = _. ,_'_A, - _'(_. ,uCA,),

OA4
.OA417.'u'='.l_z4u'l 7 -u' (V'"-_-z)Ox

OA417
.-_-yOA41p-'v' =' . --_yl_OA4v'f"- v' (V . t_--_y ) '
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for obtaining

_J4 = f_ IV" (l(_" . VAa)_") + V . #uu'VA4 + _7 . #vv'_A4

oQA4 y'T_ "T¢. /-te'#_4]+ V" # O_--_4xU'_" + V "#-_y + Pr

+ _-_ _ + rxy Oy

oQA4 OA4+ r.y O_x + Tyy Oy

;r(_. pVA4)e'] dfL

Applying the Gauss theorem and the no-slip boundary condition for the first integral, and introducing q2_,

k_zy , and qGyy as

(A.22)

(A.23)

(A.24)

gives

(A.25)

d_

Ox Ox ] u

o vA )-
oy

• _x = (l + 2_)uO0--_ + lv OM

_-_ lu OA4q2y_ = (l + 2#)v + Ox '

vOA4G°A4+ )

09.. ,
Ox Oy ] u

Oko_y O_yy _ ,
Ox Oy ] v

634 = - _ , _ (9A4. _)e' dSo Vrr

+ r_x O_x + rxy Oy

(T OA4 OA4
+ \ x_O-_x + _ ay

;{(¢. #VA4)e'] d_.

Substituting equation (A.15) into e' in the surface integral and equation (A.14) into e' in the domain integral

results in

(A.26) &74 = - Jfso [a' _r (VA4 "_) ( (P_)' ('7 p'

+ r_ O_x + r_y Oy Ox Oy

IT OAt OA4 O_xy 0_ ,
+ _ xu _x + vuu coy ax Oy ) v
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Substitution of equations (A.10), (A.16), (A.21), and (A.26) into (A.6) yields

(A.27) 5J=-L [(_.s-)T_ +(_._)r"
a

-_ 8; (2._)m (e'.,_)-\ o_ +(S,._,H (P'._

+)_4Tw(Y''8-) +)_4a2_r r V(p )''_ Vp'-?_

_a2_(_4. _) ((pE)' p'(7 :-l)p) 1 dS

+ \-b-;-_ + oy _*=ox _=_o--y-+_;-_ + oy )

(Orgy Or_ 0,_4 OM O,_y 0_'_ v'
- 7_y -_y + +

+t <'<'

The domain integral can bc expressed in terms of the conservative flow variables by using the transformation

U' = Y Q',

where Y is the Jacobian of the primitive flow variables, U = (p u v p)m, with respect to Q,

(A.28) Y =

1 0 0 0

--u 1
- 0 0

P P
--v 1

0 - 0
p P

(;
1)(u2+v2)' -('y-1)u -(7-1)v "y-1

2

The coefficients of U' in equation (A.27) can bc collected into a vector K defined as

(A.29)
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Finally, equation (A.27) is written as

a

- # Os \ Os + (_" s_#H (_".s_

+A4rw(_"'s_+A4a2_rr ( "(pE)''fip (-_--_p'P"fi)

+ f_ yTK • Q' dfL
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FIG. 5.1. Optimization history. M = 0.73, ct = 2 °, Re = 6.5 × 106.
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